Addition EYFS

Objectives	Concrete	Pictorial	Abstract	Vocabulary
Knows that a group of things change in quantity when something is added. Find the total number of items in two groups by counting all of them. Says the number that is one more than a given number. Finds one more from a group of up to five objects, then ten objects. In practical activities and discussion, beginning to use the vocabulary involved in adding. Using quantities and objects, they add two single digit numbers and count on to find the answer. Solve problems including doubling.			A focus on symbols and numbers to form a calculation. $5+2=7$ * No expectation for children to be able to record a number sentence/addition calculation.	- add - plus - and - altogether - more - make - total - how many more to make? - numbers (zero twenty and beyond) - greater - subitise - part-whole - five/ten frame - group

Addition
Year 1

Objectives	Concrete	Pictorial	Abstract	Vocabulary
Combining two parts to make a whole: part- whole model	Use cubes to add two numbers together as a group or in a bar. use real objects) \square 10 Use partwhole model	\square (3) 3 중 The Bar Model will be continued from EYFS as a method to support problem solving involving addition, continuing with the concrete using pictorial representations of objects.		- add - more - Plus - and - make - altogether - total - equal to
Represent and use number bonds and related subtraction facts within 20			10 6	- equals - double - most - count on - number line
Addition and subtraction of one-digit and two-digit numbers to 20 including 0 .	eceeceer -10	$6+3=9$ Use a number line to count on in ones.	$\begin{aligned} & 4+11=15 \\ & 15=11+4 \end{aligned}$	- balancing - part - Part-whole
Start at the bigger number and counting on	Start with the larger number on the bead string and then count of to the smaller number 1 by 1 to find the answer	122+5:17	Place the larger number in your head and count on the smaller number to find your answer.	
Regrouping to make 10		Use pictures or a number line. Regroup or partition the smaller number using the part-whole model to make 10.	$7+4=11$ If I am at seven, how many more do I need to make 10? How many more do I add on now?	

	Addition Year 4		
Obiectives	Concrete ${ }^{\text {a }}$ Pictorial	Abstract	Vocabulary
Using formal writte methods of column addition where appropriate Add numbers with up to 4 digits (with exchange)		$\begin{array}{r} 3517 \\ +\quad 396 \\ \hline 3913 \end{array}$	
Add decimals with 2 decimal places, including money		$\begin{aligned} & E 23: 59 \\ & +E 7: 55 \\ & \hline E 31 \cdot 14 \\ & \hline 1 \end{aligned}$	- halve - tens - Hundreds - thousands - regrouping - carrying - decimal - decimal point - tenths hundredths

Addition
Year 5-6

Objectives	Concrete	Pictorial	Abstract	Vocabulary
Add numbers with more than 4 digits. Add several numbers of	As previous	Asprevious	\qquad $38380^{3}+3$ 8888 83 Children should have abstract supported by a pictorial or concrete if needed.	- addition - add - more - and - make - sum - total - altogether - double - near double - half - halve
Add several numbers of increasing complexity, including adding money, measure and decimals with different numbers of decimal points.	As previous	As previous	$\begin{array}{r} 81,059 \\ 3,668 \\ 15,301 \\ +20,551 \\ 120,579 \\ 11,11 \\ 23.361 \\ 9.080 \\ 59.770 \\ +1.300 \\ \hline 93.511 \\ 21 \end{array}$ Inserting zeros as place holders	- tens - Hundreds - thousands - regrouping - carrying - exchange - decimal - decimal point - tenths - hundredths

	$\frac{\text { Subtraction }}{\text { Year } 1}$			
Objectives	Concrete	Pictorial	Abstract	Vocabulary
Subtract one-digit and twodigit numbers to 20 , including 0. Taking away ones	Use physical objects to show how objects can be taken away.	Cross out drawn objects to show what has been taken away.	$\begin{aligned} & 7-4=3 \\ & 16-9=7 \end{aligned}$	- equal to - take-away - less - minus - subtract - leaves
Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. 13-4 Use counters and move them away from the group as you take then away counting backwards as you go.	Count back on a number line or track Start at the bigger number and count back the smaller number showing the jumps on the number line.	Put 13 in your head, count back 4. What number are you at? (Use your fingers to help you)	- how many more? - how many fewer/less than? - most - least count back - how many left? - how much less is...?
Find the difference	Compare objects and amounts		Hannah has 12 sweets and her sister has 5. How many more does Hannah have than her sister?	
Represent and use number bonds and related subtraction facts within 20 Part-part whole model	Link to addition. Use PPW model to model the inverse. If 10 is the whole and 6 is one of the arts, what s the other part? $10-6=4$	Use a pictorial representation of objects to show the part-part whole model	Move to using numbers within the part whole model.	

Year 2				
Objectives	Concrete	Pictorial	Abstract	Vocabulary
Subtract a two-digit number and ones, a two-digit number and tens, two twodigit numbers Partitioning to subtract without re-grouping: 'Friendly numbers'	$34-28$ Use a bead string to model counting to next ten and the rest	Children draw representations of Dienes and cross off. $43-21=22$ Use a number line to model counting to next ten and the rest	43-21 = 22 Recording subtraction in columns supports place value and prepares for formal written methods with larger numbers. Toward the end of the year, children move to more formal recording using partitioning method: $93-76=17$	- equal to - take-away - less - minus - subtract - leaves - distance between - how many more? - how many fewer/less than? - most - least count back - how many left? - how much less is...? - difference - count on - strategy - partition - tens - ones

$\frac{\text { Subtraction }}{\text { Year } 3}$				
Objectives	Concrete	Pictorial	Abstract	Vocabulary
To subtract numbers with up to three-digits, using formal written methods of column subtraction Column subtraction (without exchanging)	Use base 10 or Numicon to model	\quad Calculations $176-64=$ 176 $\frac{64}{112}$ Secure knowledge of place value chart needed	Children should begin with the expanded form. Moving onto a more formal way as below. $\begin{array}{ccc} 47-24=23 & 728-582=146 \\ -40+7 & 7 & 12 \\ \hline 20 \\ -20+4 \\ \hline 20+3 & 5 & 8 \\ \hline \end{array}$	- equal to - take-away - less - minus - subtract - leaves - distance between
Column Subtraction (with exchanging)	 Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and	45 When confident, children can find their own way to record the exchange/regrouping	Children should begin with the expanded form. Moving onto a more formal way as below. $\begin{array}{ccc} 728-582=146 \\ M & 7 & u \\ { }^{4} 7 & 2 & 8 \\ 5 & 8 & 2 \\ \hline 1 & 4 & 6 \\ \hline \end{array}$	- how many more? - how many fewer/less than? - most - least count back - how many left? - how much less is...? - difference - count on - strategy - partition - tens - ones

	$\frac{\text { Subtraction }}{\text { Year } 4}$			
Objectives	Concrete	Pictorial	Abstract	Vocabulary
Subtract numbers with up to 4 digits using the formal written methods appropriate of column subtraction where appropriate	Model process of exchange using Numicon, base ten and then move to PV counters. Use the phrase 'take and make' for exchange- see Y3	Children to draw pv counters and show their exchange-see Y 3	$\begin{array}{ccc} 728 & -582=146 \\ n & 7 & 4 \\ 67 & 2 & 8 \\ 5 & 8 & 2 \\ \hline 1 & 4 & 6 \\ \hline \end{array}$ This will lead to an understanding of subtracting any number including decimals	- equal to - take-away - less - minus - subtract - leaves
Introduce decimal subtraction through context of money	 Children to be encouraged to use counters to represent numbers and take counters away to subtract.	 When confident, children can find their own way to record the exchange/regrouping	YAdding \& Subtracting EDeimals. 3 Rule 1 line tem up! Epiaa $\begin{array}{ccc} 1.4 \\ +6.75 & -15.1 \\ + & 7.95 & \text { Matturs } \end{array}$ Rule 23 drop it down! Nodening +6.4515 .1 clargs th $\underset{\sim}{+6.75} \frac{-7.95}{7}$ Rule 3 fill 'em in!' Thunk- 	- how many more? - how many fewer/less than? - most - least count back - how many left? - how much less is...? - difference - count on - strategy - partition - tens - ones

	$\frac{\text { Subtraction }}{\text { Year 5-6 }}$			
Objectives	Concrete	Pictorial	Abstract	Vocabulary
Subtract with at least 4 digits, including money and measures. Subtract with increasingly large and more complex numbers and decimal values (up to 3 decimal place).	See previous	See previous	$\begin{array}{r} \not \times 860699 \\ -\quad 89,949 \\ \hline 60,750 \\ \begin{array}{r} 785 \cdot 3 \mathrm{k} 199 \mathrm{~kg} \\ -\quad 36.080 \mathrm{~kg} \\ \hline 69.339 \mathrm{~kg} \end{array} \\ \hline 6 \end{array}$	- equal to - take-away - less - minus - subtract - leaves - distance between - how many more? - how many fewer/less than? - most - least count back - how many left? - how much less is...? - difference - count on - strategy - partition - tens - ones

\begin{tabular}{|c|c|c|c|c|}
\hline \& \multicolumn{3}{|c|}{\begin{tabular}{l}
Multiplication \\
Year 1
\end{tabular}} \& \\
\hline Objectives \& Concrete \& Pictorial \& Abstract \& Vocabulary \\
\hline Doubling \& \& \begin{tabular}{l}
Double 4 is 8

\square
\square
\square \\
Draw pictures to show how to double numbers.

 \& \& \multirow[t]{4}{*}{

- groups of \\
- lots of \\
- times \\
- array \\
- altogether \\
- multiply \\
- double
\end{tabular}} \\

\hline Counting in multiples \& \& डिके है के से के

\qquad \& | Count in multiples of a number aloud. |
| :--- |
| Write sequences with multiples of numbers. $\begin{gathered} 2,4,6,8,10 \\ 5,10,15,20,25,30 \end{gathered}$ | \& \\

\hline Repeated addition \& | Reqd |
| :--- |
| Use different objects to add equal groups. | \& \& \& \\

\hline Understanding arrays \& | Use objects laid out in arrays to find the answers to 2 lots 5, 3 lots of 2 etc. |
| :--- |
| ***** |
| $x^{2}-x^{2}+x^{2}-x^{2}-x^{3}$ | \& \& \[

$$
\begin{aligned}
& 3 \times 2=6 \\
& 2 \times 5=10
\end{aligned}
$$
\] \& \\

\hline
\end{tabular}

	Multiplication Year 2			
Objectives	Concrete	Pictorial	Abstract	Vocabulary
Counting in multiples of 2,3 4,5 and 10 from 0 (repeated addition)		smamb anam simion लिक्कि हे के 3 3 3 3	Count in multiples of a number aloud Write sequences with multiples of numbers 0, 2, 4, 6, 8, 10 $0,3,6,9,12,15$ 0, 5, 10, 15, 20, 25, 30 $4 \times 3=$ \square	- groups of - lots of - times - array - altogether - multiply - double
Multiplication is commutative	Pupils should understand that an array can represent different equations, and that the order of multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity.		- multiplied by - repeated addition - sets of - equal groups - commutative
Using the inverse (This should be taught alongside division)			$2 \times 4=8$ $4 \times 2=8$ $8 \div 2=4$ $8 \div 4=2$ $8=2 \times 4$ $8=4 \times 2$ $2=8 \div 4$ $4=8 \div 2$ Show all 8 related fact family sentences.	

	Multiplication Year 3			
Objectives	Concrete	Pictorial	Abstract	Vocabulary
Multiply 2-digit number by a 1-digit number Grid method Solving problems including integer problems and scaling problems	Show the link with arrays to first introduce the grid method. Move on to using Base 10 to move towards a more compact method. 4 rows of 13 Move on to place value counters to show how we are finding groups of a number Add up each column, starting with the ones making any exchanges needed.	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below. Bar model are used to explore missing numbers $4 \times \square=20$	Start with multiplying by one digit numbers and showing the clear addition alongside the grid. $18 \times 3=54$ $\begin{array}{l\|ll\|l\|} x & 1 & 0 & \\ 8 \\ \hline 3 & 3 & 0 & 2 \end{array}$	- groups of - lots of - times - array - altogether - multiply - double - multiplied by - repeated addition - sets of - equal groups - commutative - product - scale

	Multiplication Year 4			
Objectives	Concrete	Pictorial	Abstract	Vocabulary
Multiply two-digit and three-digit numbers by a one-digit number using formal written layout Grid method recap Multiplying numbers by 1 digit (year 4 expectation) Column multiplication	Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows. $\frac{\text { Calculations }}{4 \times 126}$ Fill each row with 126. Add up each column, starting with the ones making any exchanges needed. Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. $321 \times 2=642$	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below. 59 59 59 59 59 59 59 59$\begin{aligned} & =8 \times 59 \\ & 8 \times 60-8 \\ & 8 \times 6=48 \\ & 8 \times 60=480 \\ & 480-8=472 \end{aligned}$	$135 \times 5=675$	- groups of - lots of - times - array - altogether - multiply - double - multiplied by - repeated addition - sets of - equal groups - commutative - product - scale - multiples - scale - inverse - derive

(.	Multiplication Year 6			
Objectives	Concrete	Pictorial	Abstract	Vocabulary
Multiply decimal up to 2 decimal place by a single digit.	See previous	See previus	Remind children that the single digit belongs in the units column. Line up the decimal points in the question and the answer.	- groups of - lots of - times - array - altogether - multiply - double - multiplied by - repeated addition - sets of - equal groups - commutative - product - scale

	$\frac{\text { Division }}{\underline{\text { Year } 1}}$			
Objectives	Concrete	Pictorial	Abstract	Vocabulary
Division as sharing			Share 9 buns between three people. $9 \div 3=3$	- share - share equally - one each - two each... - group - groups of - lots of - array

	$\frac{\text { Division }}{\underline{\text { Year } 2}}$			
Objectives	Concrete	Pictorial	Abstract	Vocabulary
Division as grouping	Divide quantities into equal groups． sor place value counters to aid rstanding $96+3=32$ 』：ஃ¿ 		$28 \div 7=4$ Divide 28 into 7 groups．How many are in each group？	－share －share equally －one each －two each．．． －group －groups of －lots of －array －divide －divided by －divided into －division －grouping －number line －left －left over

	$\frac{\text { Division }}{\text { Year } 3(1)}$		
Objectives	Concrete Pictorial	Abstract	Vocabulary
Division as grouping	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6=4$ Continue to use bar modelling to aid solving division problems. 20 ? $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	How many groups of 6 in $\begin{gathered} 24 ? \\ 24 \div 6=4 \end{gathered}$	- share - share equally - one each - two each... - group - groups of
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rl} \operatorname{Eg} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$ Draw an array and use lines to split the array into groups to make multiplication and division sentences	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \\ & 28=7 \times 4 \\ & 28=4 \times 7 \\ & 4=28 \div 7 \\ & 7=28 \div 4 \end{aligned}$	- array - divide - divided by - divided into - division - grouping - number line - left - left over
Divide 2-digit numbers by a 1-digit number by partitioning	Eva uses a place value grid and part-whole model to solve $66 \div 3$		- product

Division Year 3 (2)				
Objectives	Concrete	Pictorial	Abstract	Vocabulary
Divide numbers that involve exchanging between the tens and ones. The answers do not have remainders.	Ron uses place value counters to divide 42 into three equal groups.	Children may use pictorial representation for the pv counters, alongside the part-whole model Children use their times-tables to partition the number into multiples of the divisor. Annie uses a similar method to divide 42 by 3	$\begin{aligned} & 96 \div 8 \\ & 96 \div 4 \\ & 96 \div 3 \\ & 96 \div 6 \end{aligned}$ Compare the statements using $<,>$ or $=$ $\begin{aligned} & 48 \div 4 \bigcirc 36 \div 3 \\ & 52 \div 4 \bigcirc 42 \div 3 \\ & 60 \div 3 \bigcirc 60 \div 4 \end{aligned}$	- share - share equally - one each - two each... - group - groups of - lots of - array - divide
Division with remainders	$14 \div 3=$ Divide objects between groups and see how much is left over \square Use place value counters to work out $94 \div 4$ Did you need to exchange any tens for ones? Is there a remainder?	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder. Use bar models to show division with remainders.	Complete written divisions and show the remainder using r.	- divided into - division - grouping - number line - left - left over - product

	$\frac{\text { Division }}{\text { Year 4 }}$			
Objectives	Concrete	Pictorial	Abstract	Vocabulary
Divide up to 3 digit numbers by 1 digit. Short Division	 Use place value counters to divide using the bus stop method alongside $42 \div 3=$ Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for ten ones and then share the ones equally among the groups. We look how much in 1 group so the answer is 14 .	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently	Begin with divisions that divide equally with no remainder $4 \longdiv { 1 9 } \quad 3 \longdiv { 2 4 7 }$ Children should be aware that a 0 is used to keep place value, if the number is not divisible. $\begin{array}{r} 093 \\ 8 \longdiv { 7 ^ { 7 } 4 1 4 } \end{array}$ Move onto divisions with a remainder.	- share - share equally - one each - two each... - group - groups of - lots of - array - divide - divided by - divided into - division - grouping - number line - left - left over - product - division facts - inverse - derive

	$\frac{\text { Division }}{\text { Year } 5}$			
Objectives	Concrete	Pictorial	Abstract	Vocabulary
Divide at least 4 digit numbers by 1 digit. Interpret remainders appropriately for the context	 Use place value counters to divide using the bus stop method alongside $42 \div 3=$ Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for ten ones and then share the ones equally among the groups. We look how much in 1 group so the answer is 14 .	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	$\frac{0663}{8 \longdiv { 5 ^ { 5 } 3 ^ { 5 } 0 ^ { 2 } 9 }}$ Finally move into decimal places to divide the total accurately.	- share - share equally - one each - two each... - group - groups of - lots of - array - divide - divided by - divided into - division - grouping - number line - left - left over - product - division facts - inverse - derive

Division

Year 6 (1)

Objectives	Concrete	Pictorial	Abstract	Vocabulary
Long division			$\begin{gathered} h t o \\ 041 R 1 \\ \hline 4 \longdiv { 1 6 5 } \end{gathered}$ 4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160). 4 goes into 16 four times. 4 goes into 5 once, leaving a remainder of 1 . $\begin{gathered} \text { thhto } \\ 0400 \mathrm{Cl} \\ \hline 3207 \end{gathered}$ 8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds $(3,200)$. 8 goes into 32 four times $(3,200 \div 8=400)$ 8 goes into 0 zero times (tens). 8 goes into 7 zero times, and leaves a remainder of 7 . $\begin{array}{r} h t o \\ 061 \\ 4 \longdiv { 2 4 7 } \\ \frac{-4}{3} \end{array}$ When dividing the ones, 4 goes into 7 one time. Multiply $1 \times 4=4$, write that four under the 7 , and subract. This finds us the remainder of 3 . Check: $4 \times 61+3=247$ $\begin{array}{r} \text { th hto } \\ 0402 \\ \begin{array}{r} 1609 \\ \frac{-8}{1} \end{array} \end{array}$ When dividing the ones, 4 goes into 9 two times. Multiply $2 \times 4=8$, write that eight under the 9 , and subract. This finds us the remainder of 1 . Check: $4 \times 402+1=1,609$	- share - share equally - one each - two each... - group - groups of - lots of - array - divide - divided by - divided into - division - grouping - number line - left - left over - product - division facts - inverse - derive

